# **CAPÍTULO 1**

1. Bronze: estanho e cobre.

Amálgama: metais misturados com mercúrio.

2. Ar, água, terra e fogo.

Quente, seco, frio e úmido.

- 3. O éter correspondia ao espaço.
- **4.** Obter ouro a partir de outros materiais e o elixir da longa vida.
- 5. Matéria formada pelos quatro elementos.
  - O ouro é o metal mais nobre.
  - Qualquer metal pode ser transformado em ouro pela combinação dos quatro elementos.
- 6. Destilação, cristalização e calcinação.
- a) Observação: para iniciar o método científico, faz-se primeiro a observação de um fenômeno que ocorre no meio ambiente.
  - Elaborar questões: após a observação, é preciso elaborar questões sobre os fatos ocorridos na busca de explicações dos fenômenos.
  - Hipóteses: o levantamento de hipóteses dos fatos ocorridos é necessário e é realizado com base em conhecimentos prévios.
  - Experimentações: os experimentos são fundamentais para comprovar as hipóteses.

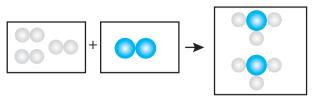
Conclusões: a partir de repetidas experiências, elaboram-se as conclusões, que originarão leis e teorias.

- b) Não. Os alquimistas não sistematizavam os procedimentos experimentais. Cada alquimista seguia procedimentos e descrições dos fatos de forma diferenciada.
- 8.
- a) Observação.
- b) Conclusões.
- 9.
- a) Observação.
- b) Hipótese.
- c) Observação.
- d) Hipótese.
- **10.** A garrafa trincou devido ao aumento do volume da água.

- **11.** c
- **12.** x = 34 g, y = 120 g e z = 680 g.
- **13.** 1.240 g
- **14.** Não, porque não foi registrada a massa do gás liberado.
- 15. x = 10
- **16.** Está de acordo com a Lei de Lavoisier, pois a quantidade que falta corresponde a 68,4 kg de gás oxigênio, que foi consumido na reação.
- **17.**

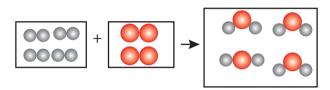
A = 101 gramas

B = 112 gramas


C = 202 gramas

D = 36 gramas

- **18.** Não, porque ambos os fenômenos envolvem gases que entram e saem do sistema.
- **19.** b
- 20. Átomo é uma esfera maciça, homogênea (contínua) e indivisível. Átomos iguais apresentam a mesma massa e mesmo tamanho; átomos diferentes apresentam massas e tamanhos diferentes.
- 21.
- a) homogêneo
- b) homogêneo
- c) homogêneo
- d) heterogêneo
- e) heterogêneo
- f) heterogêneo
- 22.
- a) Substâncias simples: N<sub>2</sub> e H<sub>2</sub>.
   Substância composta: NO<sub>3</sub>.
- b) Sim, porque houve a conservação dos átomos preservando-se, assim, a massa do sistema.
- c) 10 moléculas.
- d) 12 átomos e 4 moléculas.
- e) 12 átomos e 6 moléculas.
- f) Azul: N e Vermelho: O


$$4 \text{ NO}_2(g) \rightarrow 2 \text{ N}_2(g) + 4 \text{ O}_2(g)$$

a)



b) Nas reações químicas, os átomos e as quantidades de átomos são conservados. Assim, a massa do sistema é mantida.

24.



25. 9; 4; 2; substância.

**26.** E, E, C, C.

# **CAPÍTULO 2**

1.

a) 2,3 X 10<sup>9</sup>

b) 3,56 x 10<sup>14</sup>

c) 4,56 x 10<sup>26</sup>

d) 2,34 x 10<sup>-10</sup>

e) 4,879 x 10<sup>-7</sup>

f) 9,34981 x 10<sup>-25</sup>

2.

a) 6

b) 5

c) 2

d) 5

e) 4

f) 7

g) 4

h) 5

i) 3

j) 5

k) 5

I) 3

m) 3

3.

a) 2,46

b) 0,01

c) 15,9

d) 2,34

e) 1,36 x 10<sup>-4</sup>

f) 2,34 x 10<sup>-6</sup>

**4.**  $0.086 \text{ kg} = 8.6 \times 10^{-2} \text{ kg}$ 

**5.**  $0,6 g = 6 \times 10^{-1} g$ 

**6.** 72 kg

7. 1,8 x 10<sup>1</sup> L

8.

a) 1,586 x 10<sup>3</sup> q

b) 3,0 x 10<sup>3</sup> mL

c) 61 g e 115,4 mL

9

a) 8 x 10<sup>-3</sup> m<sup>3</sup>

b) 2 x 10<sup>-2</sup> q

10.326 K

11. - 20 °C

12. 297,92 cmHg

13. 90,79 kPa

**14.** A cidade A, porque quanto maior a altitude, menor a pressão atmosférica.

15.98°C

**16.** 130 K

17. 0,12 atm e 0,05 atm

**18.** A: 66,88 cmHg B: 68,5 cmHg C: 60,8 cmHg D: 70,68 cmHg

# **CAPÍTULO 3**

1. Matéria: minério do mármore.

Corpo: bloco de mármore.

Objeto: estátua do Cristo Redentor.

2.

a) O diamante.

b) Gesso e talco.

c) Talco.

3. Sabor, odor e brilho.

4. Sim. Sentido o vento.

**5.** Brilho, condutividade térmica e condutividade elétrica.

6.

a) Matéria: Rocha

Corpo: Safira

Objeto: Joia

b) Dureza e cor.

 Divisibilidade, elasticidade, inércia, magnetismo, maleabilidade e dureza.

8. solidificação, fusão, vaporização

9. sublimação, endotérmico

a) – 50 °C: sólido, sólido, sólido, sólido, líquido e gasoso.

357 °C: líquido, gasoso, líquido + gasoso, gasoso, gasoso e gasoso.

#### 11.

- a) substância
- b) gasoso
- c) endotérmico

#### 12.

- a) 19,3 g/mL
- b) Sim

#### 13.

- a) 50 dm<sup>3</sup>
- b) Flutua
- 14. 2,14 g/cm<sup>3</sup>.

#### 15.

- $A \rightarrow etanol$
- B → clorofórmio
- $C \rightarrow \acute{a}gua$
- **16.** c

#### **17.**

a) Ouro 18 (soluto: cobre e prata/ Solvente: ouro). Soro (Soluto: glicose / Solvente: água).

Acetona (Soluto: água / Solvente: propanona).

b) 12,5 g

# 18.

- a) 1.190,5 g
- b) 400 g
- c) 24 g
- d) Sacarose e clorato de potássio Endotérmicas, porque a solubilidade aumenta com o aumento da temperatura.

Sulfato de sódio - Exotérmica, porque a solubilidade diminui com o aumento da temperatura.

# 19.

- a) Hidróxido de sódio.
- b) Cloreto de sódio.
- c) Sim, porque todos apresentam dissolução endotérmica.
- d) Saturada.

#### 20.

- a) 300 g
- b) 10 g

## 21.

- a) 520 g
- b) 80 q

## **CAPÍTULO 4**

#### 1.

- $A \rightarrow 2$ ; 3; heterogêneo; mistura.
- $B \rightarrow 1$ ; 3; homogêneo, mistura.
- **2.** Homogêneo, heterogêneo (duas fases), heterogêneo (cinco fases) e homogêneo.

#### 3.

- a) Cobre metálico.
- b) Gasolina e água. (B)
   Mercúrio, clorofórmio, água, óleo e hexano. (C)
   Água e sulfato de cobre II. (D)

# 4.

- a) 2 e 3, porque apresentam mais de uma fase.
- b) 2 fases e 1 componente.
- c) Procedimento 2, porque a única substância presente é a água.
- d) Procedimento 1: 1 fase e 3 componentes. Procedimento 3: 3 fases e 2 componentes.
- **5.** b
- **6.** c
- **7.** d
- **8.** e
- 9. 1 → imantação
- 2 → decantação

#### 10.

- a) Densidade.
- b) Magnetismo.
- c) Densidade.
- d) Solubilidade.

- a) 2; 2; heterogêneo; imantação.
- b) 2; 2; heterogêneo; decantação.

- a) Filtração.
- b) Imantação.
- c) Decantação.
- d) Filtração.
- 13. Semelhanças: Métodos utilizados para separar misturas heterogêneas.
  - Analisa a mesma propriedade física (densidade) para proceder à separação.
  - Separa mistura heterogênea sólido-líquido com sólido mais denso que o líquido.

**Diferenças**: - Quando o sólido não decanta totalmente ou apresenta densidade próxima à da água, utiliza-se apenas a filtração.

- Separa-se uma mistura heterogênea líquido-líquido apenas por decantação.
- A decantação utiliza o funil de decantação, e a filtração utiliza o funil comum ou o funil analítico.

#### 14.

- a) I: Imantação
- II: Dissolução fracionada
- III: Filtração
- IV: Evaporação
- b) Magnetismo, solubilidade, densidade e ponto de ebulição.

#### 15.

- a) 4 fases
- b) 1 filtração 2 Imantação 3 Decantação 4 Destilação simples.
- c) Magnetismo
- d) Heterogêneo

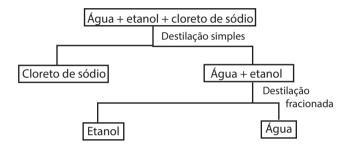
#### **16.** c

**17. Evaporação**: Homogênea. / Água e cloreto de sódio. / Deixe uma fina camada da mistura em repouso para a água passar para o estado gasoso lentamente.

**Destilação simples**: Homogênea. / Água e sulfato de cobre II. / Coloque a mistura no equipamento de destilação simples, aqueça o sistema e obtenha água destilada e o sulfato de cobre II.

**Destilação fracionada**: Homogênea. / Água e etanol. / Coloque a mistura no equipamento de des-

tilação fracionada, aqueça o sistema e obtenha o etanol e a água.


#### 18.

- a) 1; 2; homogêneo; destilação fracionada.
- b) 1; 2; homogêneo; destilação simples.
- 19. Evaporação: volatilidade ou ponto de ebulição.

Destilação simples e fracionada: pontos de ebulição.

Liquefação: ponto de condensação.

## 20.



#### 21.

- a) Destilação fracionada.
- b) Impedir que o componente menos volátil se misture com o componente mais volátil.
- c) Resfriar os vapores que chegam ao condensador para obter o destilado.

#### **22.** b

## **CAPÍTULO 5**

- a) Antes: sólido branco e líquido incolor.
   Durante: Escureceu e liberou gases.
   Final: Sólido preto.
- b) Fenômeno químico. Ocorreu mudança na constituição da matéria.
- Fenômeno físico, porque ocorreu apenas a dissolução do iodo no hexano.
- 3.
- a) Físico. Porque ocorre apenas a mudança de fase.
- b)  $CO_2(s) \rightarrow CO_2(g)$
- 4.
- a) A: Físico (ocorre mudança de fase) B: Químico (ocorre a formação de um novo material).

5. Físico

Químico (liberação de gases)

**Físico** 

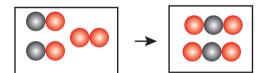
Químico (mudança de cor)

6.

- a) II
- b) I
- c) IV
- d) III

**7.** 

- a) Químico, porque ocorreu a formação de novos materiais.
- b)  $2 H_2O_2 \rightarrow 2 H_2O + O_2$
- 8. Químico, físico, químico, químico, físico e físico.


9.

- a)  $Cl_2$ ,  $Al e AlCl_3$ .
  - Reagentes:  $Cl_2$  e Al

Produto: AlCl<sub>3</sub>

- b)  $4 \text{ Al} + 6 \text{ Cl}_2 \rightarrow 4 \text{ AlCl}_3$
- **10.** 8 NO + 4 O<sub>2</sub>  $\rightarrow$  8 NO<sub>2</sub>

**11.** 2, 1, 2



12.

- a) 2, 1, 2
- b) 2, 1, 1
- c) 2, 5, 1
- d) 1, 2
- e) 2, 3, 2
- f) 1, 2, 1, 2
- g)1, 2, 1, 2
- h) 2, 1, 1, 2

13.

(I) 
$$3 \operatorname{Fe}_2 O_3(s) + \operatorname{CO}(g) \rightarrow \operatorname{CO}_2(g) + 2 \operatorname{Fe}_3 O_4(s)$$
  
(II)  $\operatorname{Fe}_3 O_4(s) + \operatorname{CO}(g) \rightarrow 3 \operatorname{FeO}(s) + \operatorname{CO}_2(g)$   
(III)  $\operatorname{FeO}(s) + \operatorname{CO}(g) \rightarrow \operatorname{Fe}(s) + \operatorname{CO}_2(g)$ 

14.

- a) 3, 1, 1
- b) 4, 3, 2
- c) 1, 3, 2, 3
- d) 2, 9, 6, 8

- e) 3, 4, 1, 4
- f) 2, 13, 8, 10
- g) 2, 9, 8, 10
- h) 2, 5, 8, 10
- i) 2, 3, 1, 6

**15.** 

- a) Decomposição
- b) Simples troca
- c) Síntese
- d) Dupla troca
- e) Simples troca
- f) Dupla troca
- g) Síntese
- h) Decomposição
- i) Dupla troca
- j) Decomposição
- k) Simples troca

16.

- a)  $4 \text{ Fe(s)} + 3 O_2(g) + 6 H_2O(v) \rightarrow 2 \text{ Fe}_2O_3.3 H_2O(s)$
- b) Síntese

17. Decomposição

$$H_2CO_3(aq) \rightarrow CO_2(g) + H_2O(I)$$

18.

- a) Decomposição
- b) Simples troca
- c) Síntese
- d) Dupla troca
- e) Decomposição
- f) Dupla troca
- g) Síntese
- h) Síntese

19.

- a) Fe(s) + 2 HC $\ell$ (aq)  $\rightarrow$  FeC $\ell$ <sub>2</sub>(aq) + H<sub>2</sub>(g)
- b) Simples troca

20.

- a)  $CaCO_3(s) + 2 HC\ell(aq) \rightarrow CaC\ell_2(aq) + CO_2(g) + H_2O(\ell)$
- b) Dupla troca

**CAPÍTULO 6** 

**1.** Esses materiais se eletrizam, adquirindo cargas de sinais contrários.

- 2.
- I. E (Atraem-se mutuamente).
- II. C
- III. C
- IV. C
- V. E (Os prótons foram descobertos por Goldstein e são denominados de raios anódicos).
- 3. E, C, E, C, E.
- **4.** Os raios catódicos são atraídos para o polo positivo, porque apresentam cargas negativas.
- **5.**
- a) Thomson. Rutherford queria confirmar se o átomo era maciço ou não.
- Partículas alfa (cargas positivas). Rutherford bombardeou uma fina lâmina de oura com essas partículas.
- c) Porque o ouro é um material muito maleável e é possível obter uma finíssima lâmina.
- **6.** C, E, E, C, C.
- 7. C, E, E, C, C.
- 8.
- a) Becquerel e Marie Curie
- b) Dalton
- c) Demócrito e Leucipo
- d) Rutherford
- e) Thomson
- f) Goldstein
- g) Dalton
- h) Thomson
- i) Rutherford
- 9. C, E, C, E, C, C.
- **10.** c
- A maioria das partículas atravessou a lâmina; o átomo apresenta mais espaços vazios do que preenchidos.
  - Poucas partículas ricocheteavam  $\,\rightarrow\,$  o núcleo apresenta carga positiva.
  - Poucas partículas voltavam  $\rightarrow$  o núcleo é a região central e maciço.
- **12.** c
- 13.

| Átomo | Prótons | Nêutrons | Elétrons | Partícula<br>(+) | Partículas<br>(-) |
|-------|---------|----------|----------|------------------|-------------------|
| S     | 16      | 16       | 16       | 16               | 16                |
| Ar    | 18      | 22       | 18       | 18               | 18                |
| Ga    | 31      | 39       | 31       | 31               | 31                |

- a) 3, 2 e 4.
- b) 26, 24 e 30.
- c) 53, 54 e 74.
- d) 34, 36 e 45.
- e) 25, 18 e 31.

## 15.

| átomo    | Símbolo | Z  | Α   | Prótons | Elétrons | Nêutrons |
|----------|---------|----|-----|---------|----------|----------|
| Potássio | К       | 19 | 39  | 19      | 19       | 20       |
| Cobalto  | Со      | 27 | 59  | 27      | 27       | 32       |
| Estanho  | Sn      | 50 | 119 | 50      | 50       | 69       |
| Bromo    | Br      | 35 | 79  | 35      | 35       | 44       |

## 16.

- a) X e W / Z e S
- b) Y e W / Z e R
- c) Y e Z
- d) X e W / Z e S

## **17.**

- a) 22, 48, 16, 22.
- b) y = 3
- **18.** a
- 19.55
- **20.** l e IV
- **21.** 18
- **22.** c
- **23.** d
- **24.** b
- **25.** 29, 29 e 32.

## 26.

- a) raios gama
- b) borboleta

#### 27.

a) Radiação gama, porque apresenta menor comprimento de onda e maior frequência.

- b) Vermelha, laranja, amarelo, verde, azul, anil e violeta.
- c) Infravermelho se encontra abaixo do vermelho em termos de frequência e energia. Ultravioleta se encontra acima do violeta em termos de frequência e energia.
- 28. Börh dividiu a eletrosfera em sete camadas e denominou-as de K, L, M, N, O, P e Q. Cada camada apresenta determinada quantidade de energia, e o elétron apresenta a energia da camada que lhe permite entrar em órbita. Quanto mais próximo do núcleo, menor a energia da camada.
- **29.** Violeta, porque apresenta menor comprimento de onda e maior freguência.

- a) A, porque todos os comprimentos de onda do visível são refletidos.
- b) B, porque alguns comprimentos de onda são refletidos, e outros são absorvidos.

#### 31.

- a) Violeta, porque apresenta menor comprimento de onda.
- b) Vermelha, porque apresenta maior energia.
- As cores são diferentes porque apresentam saltos quânticos diferentes. Quanto maior for o salto quântico, maior será a energia liberada no espectro.
- **32.** C, E, C, E, C.
- 33. C, C, E, E.

## 34.

- a) 3
- b) 3p
- c) 2, 8 e 5.
- d) 5

## **35.**

- a)  $1s^2$ ,  $2s^2$ ,  $2p^6$ ,  $3s^2$ ,  $3p^6$ ,  $3d^5$ , K = 2, L = 8, M = 13.
- b)  $1s^2$ ,  $2s^2$ ,  $2p^6$ ,  $3s^2$ ,  $3p^6$ ,  $4s^2$ ,  $3d^{10}$ ,  $4p^6$ ,  $5s^2$ ,  $4d^{10}$ ,  $5p^6$ ,  $6s^1$ , K=2, L=8, M=18, N=18, O=8, P=1.
- c)  $1s^2$ ,  $2s^2$ ,  $2p^6$ , K = 2, L = 8.
- d)  $1s^2$ ,  $2s^2$ ,  $2p^5$ , K = 2, L = 7.

#### 36.

- a) 1s<sup>2</sup>
- b) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>

- c) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup>
- d) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup>
- e) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup>
- f) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup>
- **37.** 26

## 38.

- a)  $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$
- b) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>5</sup>
- c) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>3</sup>
- d)  $s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4$
- e) s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup>

# 39.

- a) 51
- b) 5
- c) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>10</sup> 5p<sup>6</sup>
- **40.** Se. 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>4</sup>
- **41.** c

#### 42.

- a) 1s<sup>2</sup>, 2s<sup>2</sup>, 2p<sup>6</sup>, 3s<sup>2</sup>, 3p<sup>6</sup>, 4s<sup>2</sup>, 3d<sup>3</sup>
- 3d<sup>3</sup>

Ν

b) K = 2, L = 6

# **CAPÍTULO 7**

- Mendeleev: ordem crescente de massa atômica.
   Moseley: ordem crescente de número atômico.
- **2.** a
- 3. Cobre, manganês e sódio.

| Elemento      | Li | K | Ва | Hg | Si | Br |
|---------------|----|---|----|----|----|----|
| Período       | 2  | 4 | 6  | 6  | 3  | 4  |
| Classe        | М  | М | М  | М  | Α  | Α  |
| Estado físico | S  | S | S  | I  | S  | Ī  |

| Elemento      | F | Αℓ | Со | Ag | W | Ne | Xe |
|---------------|---|----|----|----|---|----|----|
| Período       | 2 | 3  | 4  | 5  | 6 | 2  | 5  |
| Classe        | Α | М  | М  | М  | М |    |    |
| Estado físico | g | s  | S  | S  | s | g  | g  |

- 5.
- a) Em ordem crescente de massa atômica organizada em uma espiral.
- b) Lei das Oitavas.
- Mendeleev ordenou os elementos químicos em ordem crescente de massa atômica, de acordo com suas propriedades.
- d) Moseley ordenou os elementos em ordem crescente de números atômicos.
- **6.** c
- **7.**
- a) Metais: Cs, Sn, Ni, Cd, Ce, Cr, Pu, Po, U, V e La. Ametais: O e Br.

Gases nobres: Rn e Ar.

- b) La e Ce.
- c) U e Pu.
- d) Pu.
- 8.
- a)

|         | Na | Р  | S  | Cł | Mn | U | 0  |
|---------|----|----|----|----|----|---|----|
| Período | 3  | 3  | 3  | 3  | 4  | 7 | 2  |
| Grupo   | 1  | 15 | 16 | 17 | 7  | 3 | 16 |

- b) Na
- c) Mn
- d) U
- e) P, S, Cl e O.
- 9. A: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>3</sup>

B: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>1</sup>

C: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup>

D:  $1s^2 2s^2 2p^6 3s^2 3p^5$ 

- **10.** d
- 11.
- a) I, B, O e M.
- b) R e M.
- c) P
- d) LeP.
- e) F
- f) N e E.
- g) A e K.
- h) G
- i) L e P.
- j) A e K / N e E / H e O / R e M / C e S.
- 12.7 elétrons
- **13.**  $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2$  (Z = 38 / Sr /

metais alcalinoterrosos).

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$  (Z = 33 / As / família do nitrogênio).

#### 14.

- a) X: metais alcalinos
- K: metais alcalinoterrosos
- Z: família do zinco
- N: família do boro
- W: família do carbono
- P: família do nitrogênio
- O: calcogênios
- Y: halogênios

## **CAPÍTULO 8**

- 1.
- a)

S.

Na· \_\_\_\_\_\_.

b)

Al O

c)

K ČĆ:

d)

Mg Cl

e)

Na Br

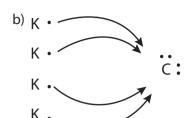
- **2.** c
- **3.** d
- 4.
- a)  $CaF_2$  b)  $Na_2S$  c)  $A\ell N$  d)  $CaCO_3$  e)  $KNO_3$  f)  $CuSO_4$
- **5.**

a) Na• → °C {:

 $Na \cdot \longrightarrow \cdot F$ :

b) SrSO<sub>4</sub>, CaSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> e Na<sub>2</sub>SO<sub>4</sub>.

Mg:


6.

<sup>а)</sup> К •

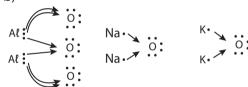
Ν•

:c:

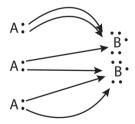
0:



c) Mg<sub>3</sub>N<sub>2</sub> e MgO.


# 7.

- a) BaCl<sub>2</sub>
- b)  $Al_2S_3$
- c) MgF,
- d) NaNO<sub>2</sub>
- e) Fe<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>
- f)  $(NH_4)_3PO_4$


# 8.

a) Mg<sup>2+</sup>O<sup>2-</sup>e Ca<sup>2+</sup>O<sup>2-</sup> (MgO; CaO)

b)



**9.** A<sub>2</sub>B<sub>2</sub>



# 10.

a)

b)

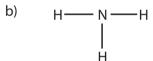


c)

d)

$$H-F$$

**11.** O = C = O;  $CO_2$ 


; CO

12. H:0:0:H

 $H_2O_2$ 

13.

a)



14.

b) O O

15.

a)

- b) C<sub>2</sub>H<sub>6</sub>O
- **16.** Metal é uma substância simples, e liga metálica é uma mistura homogênea sólida constituída por duas ou mais substâncias simples, sendo que pelo menos uma é um metal.
- **17.** As substâncias iônicas são formadas por partículas iônicas. As substâncias covalentes são formadas por partículas moléculas. Substâncias metá-

licas são formadas por partículas atômicas.

- a) NO<sub>2</sub>, Fe e LiCl.
- b) NO,
- c) LiCl

- b) Dúctil, maleável, bom condutor de calor e bom condutor de eletricidade.
- **20.** lônicos:  $MnO_2$  e  $MnCl_2$ . Covalentes: HCl, H<sub>2</sub>O e Cl<sub>2</sub>.

# 21.

- a) HNO<sub>3</sub>, NO<sub>2</sub> e H<sub>2</sub>O.
- b) Cu(NO<sub>3</sub>)<sub>2</sub>
- c) Cu

# 22.

- a) Au, Cu e Ag.
- b) Cu e Sn.
- c) Cu e Zn.
- d) Fe, Cr, Ni, Si, Se P.

# 23.

- a) Zn, SO<sub>3</sub> e Kl.
- b) SO<sub>3</sub>
- c) KI
- d) Zn

# 24.

lônicas: NaHCO<sub>3</sub> e Mg(OH)<sub>2</sub> Covalentes: C<sub>2</sub>H<sub>6</sub>O e HNO<sub>3</sub>

Metálicas: W e Fe